
16.09.2007

Design of a
Directory Information Tree

giovanni.baruzzi@syntlogo.de

16.09.2007 Syntlogo: IdM Überblick 2

Why do we need a good tree
design?

Once deployed, a DIT is difficult to change.
The Design has to be possibly simple to understand,
just because we are going to talk about it with every
customer (developers and application designers).
Complex things are an impediment to further
development

Requirements for the user’s objects

Schema is beyond the our scope, but we can
state some simple facts:

– A very good start for the user object is the class
“inetOrgPerson”

– For containers use “organizationalUnit” or
“organization”

– The groups should be “groupOfNames” or
“groupOfUniqueNames”

– You may have to define one or two auxiliary classes.

16.09.2007 Design of Directory Information Tree 3

Requirements for the applications

Applications with no integration to a Directory
–Very difficult to manage: use metadirectory techniques

Applications that can use a common user
management and integrate authentication
–Very simple requirements if uid and password policy can
be used

–sometime you can talk to developers

Applications with full integration of user
management, authentication and authorizazion, at
least for roles
–This is usual for new application, when you can enforce
your framework

16.09.2007 Design of Directory Information Tree 4

Requirements for User’s
authentication

16.09.2007 Design of Directory Information Tree 5

Choose a simple password policy
ensure that the passowrd and the password policy
are encorfed IN THE DIRECTORY and not from
someone else like a portal application

Requirements for the directory
access

16.09.2007 Design of Directory Information Tree 6

Design you acces control before you need it:
–Classify your attributes in sensitivity classes
–determine the access need from management
applications and user‘s application

–define the ACL‘s along your sensitivity classes,
containers and access need

–Define groups for the various access modes
–Assign your users (service accounts) to the above groups

Requirements for the security

16.09.2007 Design of Directory Information Tree 7

Avoid using the „root“ for access
consider to split the root password between more
people
Define an administrator group with full rights
Assign account to this group
define an auditors group

Our simple Design

16.09.2007 Design of Directory Information Tree 8

Think minimalist
Think as you would define a file system and
directories below that
You can always define a new container
move objects around may be later difficult
–you may have already defined groups (DN!)
–you may already have users which grew up used to your
structure

Design of a DIT: as flat as possible,
as deep as needed

16.09.2007 Design of Directory Information Tree 9

Here your architectural skills and creativity are
needed: there is no absolute rule
use a hierarchical structure everytime it makes
sense
but avoid unnecessary containers

Design of a DIT: as flat as possible,
as deep as needed

16.09.2007 Design of Directory Information Tree 10

When you do need a different container?
to keep together logically bound or homogeneous
objects
to simplify access control (ACI)
to avoid name collisions (RDN)
to keep the design clean & tidy
comfortable browsing of the information
to allow replication of different part of the DIT

Design of a DIT: as flat as possible,
as deep as needed

When you do not need a different container?

If the number of objects is small (e.g. less
than 10.000)

if the functional scope is similar (e.g. people
of the same organization, authorizations
groups for applications, technical accounts)
If the selection can be made through an
attribute value (use filter, acl)

Our simple design

ou=dev

ou=grp

ou=usr

ou=app

ou=adm

o=myOrg

.

.

The Root Level

16.09.2007 Design of Directory Information Tree 13

Avoid long names for
the root container.
Remember: you have to
carry them around
everywhere
My preferred choice is
simply “o=<your
organization’s name>”

ou=dev

ou=grp

ou=usr

ou=app

ou=adm

o=myOrg

.

“ou=adm”: an administrative
container

16.09.2007 Design of Directory Information Tree 14

hold the information directly
involved in the
administration of the
directory itself
The technical or service
accounts should find place
here
Place here the few groups
(groupsOfUniqueNames)
needed to implement the
access control

ou=securityGroups

ou=administrators

ou=serviceAccounts

ou=adm

o=myOrg

.

.

“ou=app”: an extra container for
applications

16.09.2007 Design of Directory Information Tree 15

A dedicated container
(“ou=app”) for
applications’ private data
Below this container you
may define a dedicated
container for every
application.
The single application
would receive full access to
its container. ou=anotherApplication

cn=specialContainer

ou=myFirstApplication

cn=otherContainer

ou=app

o=myOrg

.

.

The simple design: “o=usr”:
the People container

16.09.2007 Design of Directory Information Tree 16

central to an LDAP Design
the search base to locate the
users
No additional information is
needed from the application
than the name of this container
and a filter expression
conceal containers below this
against applications (except the
managing applications)
define containers below it as
needed (security, replications,
logical needs)

ou=selfRegistration

ou=futureSource

ou=test

dn: uid=gbar,ou=…..
sn: Baruzzi
givenName: Giovanni
uid: gbar
………..

ou=sync

dn: uid=gbar2……
…...

ou=usr

o=myOrg

.

.

Difficult decisions

16.09.2007 Design of Directory Information Tree 17

 ... arise when we work with very similar objects
differentiated only by an attribute and only time
to time we need to select between them.

Difficult decisions: different
containers

16.09.2007 Design of Directory Information Tree 18

ou=usr

ou=staff

uid=baruzzi, ……
cn
givenName
sn
mail

o=myOrg

ou=consultants

uid=baruzzi2, ……
cn
givenName
sn
mail

.

.

Difficult decisions: additional
attribute

16.09.2007 Design of Directory Information Tree 19

ou=usr

uid=baruzzi, ……
cn
givenName
sn
mail
employeeType: staff

o=myOrg

uid=baruzzi2, ……
cn
givenName
sn
mail
employeeType: consultant

.

.

“ou=grp”: Container for Roles and
Groups

16.09.2007 Design of Directory Information Tree 20

Grouping of objects is an essential function for
directories, used mainly to grant rights
groupOfNames and groupOfUniqueNames are broadly
used in applications
we put groups
–in the ou=adm container
–below the private application container
(ou=appName,ou=app...)

–below the ou=grp container
define subcontainers like “sync”, “provisioning” or
“manual”

Use of “groupOfNames”

dn: cn=group1,ou=grp,o=myOrg cn:
group1
member: uid=baruzzi, ……
member: uid=baruzzi2…..
member: …..

ou=usr

dn: uid=baruzzi, ……
cn
givenName
sn
mail

o=myOrg

.

ou=grp

dn: uid=baruzzi, ……
cn
givenName
sn
mail

.

Secure (simple ACL)
does not scale well
beyond 50.000 members
broadly used

Use of „memberOf“

Scales very well
One access gets all group
memberships
If an administrator has the
right to manage memberOf,
she can grant membership
to every group defined in
this way

ou=usr

dn: uid=baruzzi, ……
cn
givenName
mail
memberOf: VAL1

o=myOrg

.

dn: uid=baruzzi, ……
cn
givenName
mail
memberOf: VAL1
memberOf: VAL2

.

Growth of the design with the time:
merge two directories

16.09.2007 Design of Directory Information Tree 23

dn: uid=mc.mmux,ou=…..
cn: max mustermann
sn: Mustermann
givenName: Max
uid: mc.mmux
………..

dn: cn=max mustermann,,ou=…..
sn: Mustermann
givenName: Max
uid: mmux
………..

dn: cn=donald duck……
…...

cn=users and computers

dc=myCompany
ou=selfRegistration

ou=acquiredCompany

ou=test

dn: uid=gbar,ou=…..
sn: Baruzzi
givenName: Giovanni
uid: gbar
………..

ou=sync

dn: uid=gbar2……
…...

ou=usr

o=myOrg

.

.

Dir1

Dir2

Growth of the design with the time:
a directory split

16.09.2007 Design of Directory Information Tree 24

ou=selfRegistration

ou=test

dn: uid=gbar,ou=…..
sn: Baruzzi
givenName: Giovanni
uid: gbar
myObjectOwner: holding
………..

ou=sync

dn: uid=gbar2……
myObjectOwner: newCompany
…...

ou=usr

o=myOrg

.

dn: uid=gbar3……
myObjectOwner: newCompany
…...

dn: uid=gbar4……
myObjectOwner: newCompany
…...

….

.

ACL: access to
(myObjectOwner=newCompany)

Conclusion

16.09.2007 Design of Directory Information Tree 25

for LDAP, complex structure are often an
impediment to further development.
Our simple DIT model, as we have seen, can even
survive a merger….

Thank you!

	Design of aDirectory Information Tree
	Why do we need a good tree design?
	Requirements for the user’s objects
	Requirements for the applications
	Requirements for User’s authentication
	Requirements for the directory access
	Requirements for the security
	Our simple Design
	Design of a DIT: as flat as possible, as deep as needed
	Design of a DIT: as flat as possible, as deep as needed
	Design of a DIT: as flat as possible, as deep as needed
	Our simple design
	The Root Level
	“ou=adm”: an administrative container
	“ou=app”: an extra container for applications
	The simple design: “o=usr”: the People container
	Difficult decisions
	Difficult decisions: different containers
	Difficult decisions: additional attribute
	“ou=grp”: Container for Roles and Groups
	Use of “groupOfNames”
	Use of „memberOf“
	Growth of the design with the time: merge two directories
	Growth of the design with the time: a directory split
	Conclusion

